Ihre Produktauswahl

XICAR® Thermoelementrohre aus gesintertem Siliziumkarbid

XICAR® Thermoelementrohre aus gesintertem Siliziumkarbid

Thermoelementrohre aus gesintertem Siliziumkarbid zur Verwendung in der (Nichteisen-)Industrie.

  • Maximale Temperatur von 1650 °C an der Luft und bis zu 1.900 °C in einer kontrollierten Atmosphäre
  • Maximale Länge bis zu 3.000 mm mit einem maximalen Außendurchmesser von 300 mm
  • XICAR®-Thermoelement-Schutzrohre sind sowohl für die direkte als auch für die indirekte Temperaturmessung in geschmolzenem Metall (z.B. Ofenwand oder -decke) geeignet. Temperaturmessung mit Elementen vom Typ R oder S in geschmolzenem Messing, Kupfer, Gusseisen, Edelstahl oder Siliziummetall.
  • Für Temperaturmessungen in Buntmetallgießrinnen oder Gießwannen
  • Bessere oder gleiche Qualität als HEXOLOY SE-Rohre.

Teilen:

Beschreibung

XICAR® Gesinterte Siliziumkarbid-Thermoelementrohre Sialon CeramicsGesinterte Thermoelementrohre aus Siliziumkarbid mit einer Temperatur von bis zu 1.900°C in einer kontrollierten Atmosphäre.

Thermoelementschutzrohre aus XICAR-Hochtemperatur bieten hervorragende Leistungen, wenn sie korrosiven und abrasiven Bedingungen und hohen Temperaturen ausgesetzt sind. Sie bieten eine hervorragende Leistung für die Temperaturkontrolle in (Nichteisen-)Gießereien und Schmelzwerken und sind kostengünstiger als andere Materialien wie Gusseisen, Siliziumkarbid und Aluminiumoxid.

XICAR hat auch einen klaren Preisvorteil gegenüber HEXOLOY SE, während es mindestens die gleiche und oft eine bessere Leistung bietet.

Wir haben drei Standarddurchmesser von Hochtemperatur-Thermoelementschutzrohren mit Längen von 150 mm bis 3.000 mm auf Lager. Sie sind alle mit einer Standardrille versehen. Wir können jedoch auch Sonderanfertigungen liefern, die zusätzliche Werkzeugkosten verursachen können.

Die maximale Temperatur in kontrollierter Atmosphäre beträgt 1.900 oC. Die maximale Anwendungstemperatur im Freien liegt bei 1.650 oC

Wie funktioniert ein Thermoelementschutzrohr aus gesintertem Siliziumkarbid?

Mit freundlicher Genehmigung von ExplainthatStuff.com

Der deutsche Physiker Thomas Seebeck (1770-1831) war der erste, der feststellte, dass ein elektrischer Strom fließt, wenn zwei Enden eines Metalls unterschiedliche Temperaturen haben. Das ist eine Möglichkeit, das zu erklären, was heute als Seebeck-Effekt oder thermoelektrischer Effekt bekannt ist. Seebeck fand heraus, dass die Dinge noch interessanter wurden, als er weiter forschte. Wenn er die beiden Enden des Metalls miteinander verband, floss kein Strom; ebenso floss kein Strom, wenn die beiden Enden des Metalls die gleiche Temperatur hatten.

XICAR® Gesinterte Siliziumkarbid-Thermoelementrohre Sialon Ceramics

Kunstwerk: Die Grundidee eines Thermoelementes: Zwei ungleiche Metalle (graue Kurven) sind an ihren beiden Enden miteinander verbunden. Wenn ein Ende des Thermoelements auf etwas Heißes (die heiße Verbindungsstelle) und das andere Ende auf etwas Kaltes (die kalte Verbindungsstelle) gelegt wird, entsteht eine Spannung (Potenzialdifferenz). Sie können diese messen, indem Sie ein Voltmeter (V) über die beiden Verbindungsstellen legen.

Seebeck wiederholte das Experiment mit anderen Metallen und versuchte dann, zwei verschiedene Metalle zusammen zu verwenden. Wenn nun die Art und Weise, wie Elektrizität oder Wärme durch ein Metall fließt, von der inneren Struktur des Materials abhängt, können Sie wahrscheinlich erkennen, dass zwei verschiedene Metalle unterschiedliche Mengen an Elektrizität erzeugen, wenn sie auf dieselbe Temperatur erhitzt werden. Wie wäre es also, wenn du einen gleich langen Streifen aus zwei verschiedenen Metallen nimmst und sie an ihren beiden Enden zu einer Schleife verbindest.

Dann tauchen Sie ein Ende (eine der beiden Verbindungsstellen) in etwas Heißes (z. B. ein Becherglas mit kochendem Wasser) und das andere Ende (die andere Verbindungsstelle) in etwas Kaltes. Sie werden feststellen, dass ein elektrischer Strom durch die Schleife fließt (die praktisch ein Stromkreis ist), und die Größe dieses Stroms hängt direkt mit dem Temperaturunterschied zwischen den beiden Verbindungsstellen zusammen.

Das Wichtigste beim Seebeck-Effekt ist, dass die Größe der erzeugten Spannung oder des Stroms nur von der Art des beteiligten Metalls (oder der Metalle) und der Temperaturdifferenz abhängt. Sie brauchen keine Verbindung zwischen verschiedenen Metallen, um einen Seebeck-Effekt zu erzeugen: nur einen Temperaturunterschied. In der Praxis verwenden Thermoelemente jedoch Metallübergänge.

Xicar-Datenblatt

XICAR®-Datenblatt
Temperatur Max 1700 °C - 1800 °C
Dichte > 3,10 g/cm3
Offene Porosität 0%
Biegefestigkeit/Biegefestigkeit 20°C 320-400 MPa
Biegefestigkeit/Biegefestigkeit 1300°C 360-410 MPa
Zugfestigkeit 1950-2600 MPa
Elastizitätsmodul 410 GPa
Wärmeleitfähigkeit 20°C 116 W/m.k.
Wärmeleitfähigkeit 1200°C 35 W/m.k.
Koeff. Thermische Ausdehnung 4.0 K-1×10-6
Härte HV1 kg/mm2 2350
säurefest alkalisch Ausgezeichnet
Temperaturwechselbeständigkeit (delta T) 600 °C
Schlagzähigkeit Bruchzähigkeit 4,0 MPa m½

Broschüre herunterladen

Bitte besuchen Sie unsere Broschüren-Seite zum kostenlosen Download!

QR-Code

XICAR® Gesinterte Siliziumkarbid-Thermoelementrohre Sialon Ceramics
Kopieren Sie keinen Text!